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Introduction

Dynamic skin deformation contributes to the enriched 
realism of character models in rendered scenes.

It has a long tradition in CG and CA…



[Mukai18] Tomohiko Mukai, Example-Based Skinning Animation, pp 2093-2112, Handbook of Human Motion, Springer, 2018.
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𝒲 𝜽;𝑀, 𝑱,𝑾

Get the skin surface 𝑀.

[MTT91] Magnenat-Thalmann N., Thalmann D., “Human Body Deformations Using Joint-dependent Local Operators and Finite-

Element Theory”, Making Them Move, N.Badler, B.A.Barsky, D.Zeltzer, eds, Morgan Kaufmann, San Mateo, California, pp.243-262, 

1991.

Linear blend skinning: [MTT91]

Define the skeleton 𝑱.
Map vertices to the skeleton: 𝑾

Apply rotations 𝜽 to the 
skeleton.
Reposition vertices (𝒲).
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Unnatural deformations
at certain poses

Impossible to express 
nonlinear deformation
i.e. muscle bulging

[Yang & Zhang 06] Xiaosong Yang and J. J. Zhang, "Stretch It - Realistic Smooth Skinning," International Conference on
Computer Graphics, Imaging and Visualisation (CGIV'06), Sydney, Qld., 2006, pp. 323-328.

[Lewis et al 06] J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose space deformation: a unified approach to shape
interpolation and skeleton-driven deformation. Proc Computer graphics and interactive techniques SIGGRAPH ‘00.

[Romero et al 20] Romero, Cristian & Otaduy, Miguel & Casas, Dan & Perez, Jesus. (2020). Modeling and Estimation of Nonlinear
Skin Mechanics for Animated Avatars. Computer Graphics Forum. 39. pp. 77-88.
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Impossible to simulate
skin dynamics
i.e. jiggle effect
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Limitations of LBS
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Geometric Physics-based

[Ziva Dynamics] 

Solutions: Previous work

[Sloan et al. 01] 

[Magnenat-Thalmann et al. 04] N Magnenat-Thalmann, F Cordier, H Seo, G Papagianakis, Modeling of bodies and clothes for
virtual environments, 2004 International Conference on Cyberworlds, 201-208

[Sloan et al. 01] P. P. Sloan, C. Rose and M. Cohen, “Shape by Example”, ACM SIGGRAPH Symposium on Interactive 3D
Graphics, NC, USA, pp. 135–143, 2001.

[Magnenat-Thalmann et al. 04] 

Example-based

Previous work



𝛽1* + 𝛽 2* + 𝛽 3*
+ … Basis shape vectors

𝑴 𝜷 = ഥ𝑻 +෍𝛽𝑛𝑺𝒏

[ASK+05] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis J., SCAPE: Shape Completion and
Animation of People. ACM Trans. Graph. (Proc. SIGGRAPH 24, 3, 408–416) 2005.

[HLRB12] D. Hirshberg, M. Loper, E. Rachlin, and M. Black, Coregistration: Simultaneous alignment and modeling of
articulated 3D shape. In European Conf. on Computer Vision (ECCV), LNCS 7577, Part IV, 242–255, 2012.

[LMRP+15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A Skinned Multi-Person Linear Model.
ACM Trans. Graphics (Proc. SIGGRAPH Asia), 2015.

A unifying framework for subject- & 
pose-dependent shapes [HLRB12,LMRP+15]

[SMT03] Seo H., and Magnenat-Thalmann N., “An Automatic Modeling of
Human Bodies from Sizing Parameters”, ACM SIGGRAPH 2003 Symposium
on Interactive 3D Graphics (April), pp.19-26, Monterey, USA, 2003.

Data-driven body shape modelers [SMT03, ASK+05]

Previous work



Data-driven dynamic human shape modelers

[CO18] Casas, D. & Otaduy, M. (2018). Learning Nonlinear Soft-Tissue Dynamics for Interactive Avatars. Proc. ACM
Computer Graphics and Interactive Techniques. 1. 1-15.

[PMR+15] Pons-Moll G., Romero J., Mahmood N., and Black M. J.: Dyna: a model of dynamic human shape in motion. ACM 
Trans. Graph. 34, 4, Article 120 (July 2015).

𝑴t = 𝑳𝑩𝑺t + ∆t
𝑳𝑩𝑺t = 𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝜽𝒕; ഥ𝑀 𝜷 , 𝐽 𝜷 ,𝑾)

∆t= 𝑔𝑙𝑖𝑛𝑒𝑎𝑟(𝒗𝒕, 𝒂𝒕, ሶ𝜽𝒕, ሷ𝜽𝒕,∆t−1,∆t−2 ; ഥ𝑀 𝜷 )

t

[PMR+15, CO18] 

Previous work



• We deploy LSTM network to learn our function. 

• The results of frame t depend on the results of previous frames t-1, t-2, …

• We also consider subject specificity i.e. 𝜷. 

Our goal is to learn a function  

∆ 𝑡= 𝑓(𝜽𝒕, 𝑓 𝜽𝒕−𝟏 ,𝜷)

𝑓 {𝜽𝒕} = {∆𝒕}, 𝑡 = 1,…𝑇

c.f. 𝞿𝑡 = 𝒗𝒕, 𝒂𝒕, ሶ𝜽𝒕, ሷ𝜽𝒕

Both input and outputs are sequences!!

=>

A common shape space is required: SMPL! (A Skinned Multi-Person 

Linear Model)

DS-Net: Overview

[LMRP+15] 

[LMRP+15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A Skinned Multi-Person Linear Model.
ACM Trans. Graphics (Proc. SIGGRAPH Asia), 2015.



[PRMB15] Pons-Moll G., Romero J., Mahmood N., and Black M. J.: Dyna: a model of dynamic human shape in motion. ACM
Trans. Graph. 34, 4, Article 120 (July 2015), 14 pages.

Dyna dataset [PRMB15]

• Captured shapes exhibiting dynamic skin deformation
• 5 (female) subjects, 10~14 motions each
• Inter-, intra-subject correspondence with N=6890 vertices, 13776 triangles
• The duration of each sequence varies: 2 ~15 sec.

DS-Net: dataset



Dyna [PRMB15] : training & validation
Mosh [LMB14] : test

dataset subjects motions fps
No. sequences 
(men/women) 

Dyna
5 men,  

5 women

10~14 motions for each subject:

one-leg jumping, light hoping, jumping 
jacks, shake hips, running in place, etc.

60 66 / 67

Mosh
Same subjects as 

above

Includes some skin-dynamics inducing 
motions (side-to-side hoping, 

basketball, kicking) that are not 
included Dyna.

100 24 / 30

[PRMB15] Pons-Moll G., Romero J., Mahmood N., and Black M. J.: Dyna: a model of dynamic human shape in motion. ACM
Trans. Graph. 34, 4, Article 120 (July 2015), 14 pages.
[LMB14] M. Loper, N. Mahmood, and M. J. Black. MoSh: Motion and Shape Capture from Sparse Markers. ACM Trans.
Graph., 33(6):220:1–220:13, Nov. 2014.

DS-Net: dataset



∆𝑡= 𝒲−1 𝜽𝒕, 𝑆 𝑡 − ഥ𝑻 +𝑀𝑆 𝜷∗
3. The displacement vector is considered as the dynamic skin component.

Unposing operation: transforms a body mesh to its rest pose.

min
𝜽𝒕

𝒲 𝜽𝒕, ഥ𝑻 + 𝑀𝑆 𝜷∗ +𝑀𝑃 𝜽𝒕 − 𝑆𝑡 2
.

Extraction of SMPL parameters + redisuals ∆, from each mesh.

1. Compute the best matching SMPL parameters (𝜷, 𝜽1) at frame 1.

min
𝜷,𝜽1

𝒲 𝜽1, ഥ𝑻 + 𝑀𝑆 𝜷 +𝑀𝑃 𝜽𝟏 − 𝑆1 2
.

2. Compute the best matching SMPL parameters 𝜽𝒕 for each frame > 1.

Fixed throughout all frames > 1.

The training data is a set of input and output pairs : {(𝜷𝑚, 𝜽𝑡
𝑚, ∆𝑡

𝑚)}, m=1…65. 

For each motion sequence m:

Generation of training data



(c) ഥ𝑻 +𝑀𝑆 𝜷(b) 𝒲−1(𝜽𝒕, 𝑺)(a) 𝑺

Mesh alignment results

(d) ഥ𝑻 +𝑀𝑆(𝜷) + ∆𝑡

Skin displacements contributed by 
the dynamic skin deformation are 
recorded at a canonical pose 𝜽0. 

Generation of training data



DSNet: Dynamic skin prediction

• The original data space resides in a high dimensional space: ∆𝑡∈ 𝑅𝑁×3 (> 20 000)

• We represent them in a latent space by using an autoencoder: 𝛿𝑡 ∈ 𝑅100

• The DSNet LSTM [HS97] is trained on the latent space

enc dec

Pre-trained
Autoencoder (AE)

∆ ෩∆𝛿
dec
(AE)

෩∆2෩∆1

෩𝜹1 ෩𝜹2

dec
(AE)

FC FC

FC FC

LSTM LSTM

Dynamic skin 
network

. . .

(𝜷, 𝜽2)(𝜷, 𝜽1)

FC FC

𝐿( ෩𝜹𝑡 ,𝜹𝑡) =෍

𝑡=1

𝑇

෩𝜹𝑡 − 𝜹𝑡 2

DS-Net: Architecture



The dimension of the original mesh 3N (3×6890= 20,670) is
reduced to 100!!

: data
: dense layer

Displacement mesh autoencoder (AE):

∆ ෩∆
𝜹

Data dimension reduction



Displacement mesh autoencoder (AE):

• The input data ∆ has been normalized to [-1,1].
• Pytorch implementation of Adam optimizer.
• Batch size 64, learning rate 0,0001.
• 11,8% of network parameters, compared to the other AE 

[CO18]. 
=> much more efficient to train!! 

DS-Net: AE details

[CO18] Casas, D. & Otaduy, M. (2018). Learning Nonlinear Soft-Tissue Dynamics for 

Interactive Avatars. Proceedings of the ACM on Computer Graphics and Interactive 

Techniques



Reconstruction results: min 0 cm, max 1.033 cm

DS-Net: AE results



min 0 cm, max 1.000 cm

DS-Net: AE results

Reconstruction results:



Implementation details

• Tensorflow 2.0 implementation of Adam optimizer 
• 3rd dimensions of output vectors: 64, 128, 60, 100
• Activation functions: linear, tanh, (bath normalization), linear 
• Batch size=16, lr= 0.0001.
• 0.05 sec/epoch on an Ubuntu machine with Nvidia GeForce RTX 2080 

Super 

Data preprocessing

• Uniformize the frame lengths (to 300) by zero padding or tail clipping.

FC

LSTM

FC

FC

Implementation details
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DS-Net: Prediction results

On validation data :



DS-Net: Prediction results

On validation data :



DS-Net: Prediction results

On unseen motions :



On unseen motions & unseen subjects:

DS-Net: Prediction results



• A learning based method to the estimation of quality
dynamic skin deformation.

• The dynamic skin deformation has been modeled as a time 
series data, as a function of pose, body shape, and the 
results of previous time steps.
=>

• Also developed has been an AE, which builds a compact 
space for the intrinisic representation of skin displacement, 
allowing a very efficient operation of the DSNet.

An LSTM based NN has been developed, trained on sequences of 
triangular meshes captured from real people.       

Conclusion



Thank you!

Acknowledgement: ANR Human4D (ANR-19-CE23-
0020) by the French Agence Nationale de la Recherche



ഥ𝑀 𝜷, 𝜽 = ഥ𝑻 + 𝑀𝑆 𝜷 +𝑀𝑃 𝜽

𝑀 𝜷, 𝜽 = 𝒲 𝜽, ഥ𝑀 𝜷, 𝜽 , 𝐽 𝜷 ,𝑾
linear blend skinning

Template model Pose blend shapeShape blend shape

[LMRP+15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A Skinned Multi-Person Linear Model.
ACM Trans. Graphics (Proc. SIGGRAPH Asia), 2015.

𝑀𝑆 𝜷 = 𝝁𝑆 +෍

𝑛=1

𝜷

𝛽𝑛𝒔𝑛 𝑀𝑃 𝜽 = ෍

𝑛=1

9𝐾

(𝑅𝑛 𝜽 − 𝑅𝑛 𝜽0 ) 𝑷𝑛

SMPL: A Skinned Multi-Person Linear Model [LMRP+15] 

DS-Net: Body model



Long Short Term Memory network [HS97] 

• It’s an RNN, network with recurrent edges
• One or more layer is connected to itself
− Self connections allow the network to build an internal 

representation of past inputs
− In effect they serve as network memory

∆ 𝑡= 𝑓(𝒙𝒕, 𝑓(𝒙𝒕−𝟏))
Our function

DS-Net : LSTM

[HS97] Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.



DSNet: Earlier versions II

 

෪𝛿1 ෪𝛿2

𝞿1 𝞿2
DecoderShape encoder

𝑖𝑛𝑖𝑡𝑠𝑡𝑎𝑡𝑒 = 𝐿𝑆𝑇𝑀𝑒𝑛𝑐(𝑑𝑒𝑛𝑠𝑒 𝜷 )

DS-Net: Architecture



enc dec

Pre-trained
Autoencoder (AE)

∆ ෨∆𝛿
dec
(AE)

෨∆2෨∆1

෩𝜹1 ෩𝜹2

dec
(AE)

FC FC

LSTM LSTM

LSTM LSTM

FC FC

LSTM LSTM

𝞿1 𝞿2

Dynamic 
skin Decoder

Body shape
Encoder

𝜷

FC

RBF

. . .

DSNet: Earlier versions I

𝞿𝑡 = (𝒗𝒕, 𝒂𝒕, ሶ𝜽𝒕, ሷ𝜽𝒕)

DS-Net: Architecture



DS-Net: Prediction results

On validation data :



DS-Net: Prediction results

On validation data :



DS-Net: Prediction results

On unseen motions :



DS-Net: Prediction results

On unseen motions :



On unseen motions :

DS-Net: Prediction results



On unseen motions & unseen subjects:

DS-Net: Prediction results



A note on the training data

• We observed that the dynamics dependent shapes had been partly
absorbed by the pose-dependent shape..!!

• ‘spine 2’ joint angles during
‘Jiggling on toes’ motion

• This means that our training data do not fully capture the observed
dynamics…

Conclusion


